3.483 \(\int \frac{1}{x (a+b x^3)^2 \sqrt{c+d x^3}} \, dx\)

Optimal. Leaf size=132 \[ \frac{\sqrt{b} (2 b c-3 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 a^2 (b c-a d)^{3/2}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{3 a^2 \sqrt{c}}+\frac{b \sqrt{c+d x^3}}{3 a \left (a+b x^3\right ) (b c-a d)} \]

[Out]

(b*Sqrt[c + d*x^3])/(3*a*(b*c - a*d)*(a + b*x^3)) - (2*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(3*a^2*Sqrt[c]) + (Sq
rt[b]*(2*b*c - 3*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*a^2*(b*c - a*d)^(3/2))

________________________________________________________________________________________

Rubi [A]  time = 0.13866, antiderivative size = 132, normalized size of antiderivative = 1., number of steps used = 7, number of rules used = 5, integrand size = 24, \(\frac{\text{number of rules}}{\text{integrand size}}\) = 0.208, Rules used = {446, 103, 156, 63, 208} \[ \frac{\sqrt{b} (2 b c-3 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 a^2 (b c-a d)^{3/2}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{3 a^2 \sqrt{c}}+\frac{b \sqrt{c+d x^3}}{3 a \left (a+b x^3\right ) (b c-a d)} \]

Antiderivative was successfully verified.

[In]

Int[1/(x*(a + b*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

(b*Sqrt[c + d*x^3])/(3*a*(b*c - a*d)*(a + b*x^3)) - (2*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/(3*a^2*Sqrt[c]) + (Sq
rt[b]*(2*b*c - 3*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(3*a^2*(b*c - a*d)^(3/2))

Rule 446

Int[(x_)^(m_.)*((a_) + (b_.)*(x_)^(n_))^(p_.)*((c_) + (d_.)*(x_)^(n_))^(q_.), x_Symbol] :> Dist[1/n, Subst[Int
[x^(Simplify[(m + 1)/n] - 1)*(a + b*x)^p*(c + d*x)^q, x], x, x^n], x] /; FreeQ[{a, b, c, d, m, n, p, q}, x] &&
 NeQ[b*c - a*d, 0] && IntegerQ[Simplify[(m + 1)/n]]

Rule 103

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_.)*((e_.) + (f_.)*(x_))^(p_.), x_Symbol] :> Simp[(b*(a +
 b*x)^(m + 1)*(c + d*x)^(n + 1)*(e + f*x)^(p + 1))/((m + 1)*(b*c - a*d)*(b*e - a*f)), x] + Dist[1/((m + 1)*(b*
c - a*d)*(b*e - a*f)), Int[(a + b*x)^(m + 1)*(c + d*x)^n*(e + f*x)^p*Simp[a*d*f*(m + 1) - b*(d*e*(m + n + 2) +
 c*f*(m + p + 2)) - b*d*f*(m + n + p + 3)*x, x], x], x] /; FreeQ[{a, b, c, d, e, f, n, p}, x] && LtQ[m, -1] &&
 IntegerQ[m] && (IntegerQ[n] || IntegersQ[2*n, 2*p])

Rule 156

Int[(((e_.) + (f_.)*(x_))^(p_)*((g_.) + (h_.)*(x_)))/(((a_.) + (b_.)*(x_))*((c_.) + (d_.)*(x_))), x_Symbol] :>
 Dist[(b*g - a*h)/(b*c - a*d), Int[(e + f*x)^p/(a + b*x), x], x] - Dist[(d*g - c*h)/(b*c - a*d), Int[(e + f*x)
^p/(c + d*x), x], x] /; FreeQ[{a, b, c, d, e, f, g, h}, x]

Rule 63

Int[((a_.) + (b_.)*(x_))^(m_)*((c_.) + (d_.)*(x_))^(n_), x_Symbol] :> With[{p = Denominator[m]}, Dist[p/b, Sub
st[Int[x^(p*(m + 1) - 1)*(c - (a*d)/b + (d*x^p)/b)^n, x], x, (a + b*x)^(1/p)], x]] /; FreeQ[{a, b, c, d}, x] &
& NeQ[b*c - a*d, 0] && LtQ[-1, m, 0] && LeQ[-1, n, 0] && LeQ[Denominator[n], Denominator[m]] && IntLinearQ[a,
b, c, d, m, n, x]

Rule 208

Int[((a_) + (b_.)*(x_)^2)^(-1), x_Symbol] :> Simp[(Rt[-(a/b), 2]*ArcTanh[x/Rt[-(a/b), 2]])/a, x] /; FreeQ[{a,
b}, x] && NegQ[a/b]

Rubi steps

\begin{align*} \int \frac{1}{x \left (a+b x^3\right )^2 \sqrt{c+d x^3}} \, dx &=\frac{1}{3} \operatorname{Subst}\left (\int \frac{1}{x (a+b x)^2 \sqrt{c+d x}} \, dx,x,x^3\right )\\ &=\frac{b \sqrt{c+d x^3}}{3 a (b c-a d) \left (a+b x^3\right )}+\frac{\operatorname{Subst}\left (\int \frac{b c-a d+\frac{b d x}{2}}{x (a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )}{3 a (b c-a d)}\\ &=\frac{b \sqrt{c+d x^3}}{3 a (b c-a d) \left (a+b x^3\right )}+\frac{\operatorname{Subst}\left (\int \frac{1}{x \sqrt{c+d x}} \, dx,x,x^3\right )}{3 a^2}-\frac{(b (2 b c-3 a d)) \operatorname{Subst}\left (\int \frac{1}{(a+b x) \sqrt{c+d x}} \, dx,x,x^3\right )}{6 a^2 (b c-a d)}\\ &=\frac{b \sqrt{c+d x^3}}{3 a (b c-a d) \left (a+b x^3\right )}+\frac{2 \operatorname{Subst}\left (\int \frac{1}{-\frac{c}{d}+\frac{x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{3 a^2 d}-\frac{(b (2 b c-3 a d)) \operatorname{Subst}\left (\int \frac{1}{a-\frac{b c}{d}+\frac{b x^2}{d}} \, dx,x,\sqrt{c+d x^3}\right )}{3 a^2 d (b c-a d)}\\ &=\frac{b \sqrt{c+d x^3}}{3 a (b c-a d) \left (a+b x^3\right )}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{3 a^2 \sqrt{c}}+\frac{\sqrt{b} (2 b c-3 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{3 a^2 (b c-a d)^{3/2}}\\ \end{align*}

Mathematica [A]  time = 0.233109, size = 123, normalized size = 0.93 \[ \frac{\frac{a b \sqrt{c+d x^3}}{\left (a+b x^3\right ) (b c-a d)}+\frac{\sqrt{b} (2 b c-3 a d) \tanh ^{-1}\left (\frac{\sqrt{b} \sqrt{c+d x^3}}{\sqrt{b c-a d}}\right )}{(b c-a d)^{3/2}}-\frac{2 \tanh ^{-1}\left (\frac{\sqrt{c+d x^3}}{\sqrt{c}}\right )}{\sqrt{c}}}{3 a^2} \]

Antiderivative was successfully verified.

[In]

Integrate[1/(x*(a + b*x^3)^2*Sqrt[c + d*x^3]),x]

[Out]

((a*b*Sqrt[c + d*x^3])/((b*c - a*d)*(a + b*x^3)) - (2*ArcTanh[Sqrt[c + d*x^3]/Sqrt[c]])/Sqrt[c] + (Sqrt[b]*(2*
b*c - 3*a*d)*ArcTanh[(Sqrt[b]*Sqrt[c + d*x^3])/Sqrt[b*c - a*d]])/(b*c - a*d)^(3/2))/(3*a^2)

________________________________________________________________________________________

Maple [C]  time = 0.01, size = 915, normalized size = 6.9 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

int(1/x/(b*x^3+a)^2/(d*x^3+c)^(1/2),x)

[Out]

1/3*I/a^2*b/d^2*2^(1/2)*sum(1/(a*d-b*c)*(-d^2*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(
1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1
/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(
1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*Elliptic
Pi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),1/2*
b/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alp
ha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-d^2*c)^(1/3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2))
,_alpha=RootOf(_Z^3*b+a))-b/a*(1/3/(a*d-b*c)*(d*x^3+c)^(1/2)/(b*x^3+a)-1/6*I/d*2^(1/2)*sum(1/(a*d-b*c)^2*(-d^2
*c)^(1/3)*(1/2*I*d*(2*x+1/d*(-I*3^(1/2)*(-d^2*c)^(1/3)+(-d^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)*(d*(x-1/d*(-d^2*
c)^(1/3))/(-3*(-d^2*c)^(1/3)+I*3^(1/2)*(-d^2*c)^(1/3)))^(1/2)*(-1/2*I*d*(2*x+1/d*(I*3^(1/2)*(-d^2*c)^(1/3)+(-d
^2*c)^(1/3)))/(-d^2*c)^(1/3))^(1/2)/(d*x^3+c)^(1/2)*(I*(-d^2*c)^(1/3)*_alpha*3^(1/2)*d-I*3^(1/2)*(-d^2*c)^(2/3
)+2*_alpha^2*d^2-(-d^2*c)^(1/3)*_alpha*d-(-d^2*c)^(2/3))*EllipticPi(1/3*3^(1/2)*(I*(x+1/2/d*(-d^2*c)^(1/3)-1/2
*I*3^(1/2)/d*(-d^2*c)^(1/3))*3^(1/2)*d/(-d^2*c)^(1/3))^(1/2),1/2*b/d*(2*I*(-d^2*c)^(1/3)*3^(1/2)*_alpha^2*d-I*
(-d^2*c)^(2/3)*3^(1/2)*_alpha+I*3^(1/2)*c*d-3*(-d^2*c)^(2/3)*_alpha-3*c*d)/(a*d-b*c),(I*3^(1/2)/d*(-d^2*c)^(1/
3)/(-3/2/d*(-d^2*c)^(1/3)+1/2*I*3^(1/2)/d*(-d^2*c)^(1/3)))^(1/2)),_alpha=RootOf(_Z^3*b+a)))-2/3*arctanh((d*x^3
+c)^(1/2)/c^(1/2))/a^2/c^(1/2)

________________________________________________________________________________________

Maxima [F]  time = 0., size = 0, normalized size = 0. \begin{align*} \int \frac{1}{{\left (b x^{3} + a\right )}^{2} \sqrt{d x^{3} + c} x}\,{d x} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="maxima")

[Out]

integrate(1/((b*x^3 + a)^2*sqrt(d*x^3 + c)*x), x)

________________________________________________________________________________________

Fricas [A]  time = 1.96192, size = 1831, normalized size = 13.87 \begin{align*} \text{result too large to display} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="fricas")

[Out]

[1/6*(2*sqrt(d*x^3 + c)*a*b*c + (2*a*b*c^2 - 3*a^2*c*d + (2*b^2*c^2 - 3*a*b*c*d)*x^3)*sqrt(b/(b*c - a*d))*log(
(b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^3 + a)) + 2*((b^2*c - a*b*d)*
x^3 + a*b*c - a^2*d)*sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3))/(a^3*b*c^2 - a^4*c*d + (a^2*b
^2*c^2 - a^3*b*c*d)*x^3), 1/3*(sqrt(d*x^3 + c)*a*b*c + (2*a*b*c^2 - 3*a^2*c*d + (2*b^2*c^2 - 3*a*b*c*d)*x^3)*s
qrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) + ((b^2*c - a*b*
d)*x^3 + a*b*c - a^2*d)*sqrt(c)*log((d*x^3 - 2*sqrt(d*x^3 + c)*sqrt(c) + 2*c)/x^3))/(a^3*b*c^2 - a^4*c*d + (a^
2*b^2*c^2 - a^3*b*c*d)*x^3), 1/6*(2*sqrt(d*x^3 + c)*a*b*c + 4*((b^2*c - a*b*d)*x^3 + a*b*c - a^2*d)*sqrt(-c)*a
rctan(sqrt(d*x^3 + c)*sqrt(-c)/c) + (2*a*b*c^2 - 3*a^2*c*d + (2*b^2*c^2 - 3*a*b*c*d)*x^3)*sqrt(b/(b*c - a*d))*
log((b*d*x^3 + 2*b*c - a*d + 2*sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(b/(b*c - a*d)))/(b*x^3 + a)))/(a^3*b*c^2 - a^4
*c*d + (a^2*b^2*c^2 - a^3*b*c*d)*x^3), 1/3*(sqrt(d*x^3 + c)*a*b*c + (2*a*b*c^2 - 3*a^2*c*d + (2*b^2*c^2 - 3*a*
b*c*d)*x^3)*sqrt(-b/(b*c - a*d))*arctan(-sqrt(d*x^3 + c)*(b*c - a*d)*sqrt(-b/(b*c - a*d))/(b*d*x^3 + b*c)) + 2
*((b^2*c - a*b*d)*x^3 + a*b*c - a^2*d)*sqrt(-c)*arctan(sqrt(d*x^3 + c)*sqrt(-c)/c))/(a^3*b*c^2 - a^4*c*d + (a^
2*b^2*c^2 - a^3*b*c*d)*x^3)]

________________________________________________________________________________________

Sympy [F(-1)]  time = 0., size = 0, normalized size = 0. \begin{align*} \text{Timed out} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x**3+a)**2/(d*x**3+c)**(1/2),x)

[Out]

Timed out

________________________________________________________________________________________

Giac [A]  time = 1.69251, size = 207, normalized size = 1.57 \begin{align*} -\frac{1}{3} \, d^{2}{\left (\frac{{\left (2 \, b^{2} c - 3 \, a b d\right )} \arctan \left (\frac{\sqrt{d x^{3} + c} b}{\sqrt{-b^{2} c + a b d}}\right )}{{\left (a^{2} b c d^{2} - a^{3} d^{3}\right )} \sqrt{-b^{2} c + a b d}} - \frac{\sqrt{d x^{3} + c} b}{{\left (a b c d - a^{2} d^{2}\right )}{\left ({\left (d x^{3} + c\right )} b - b c + a d\right )}} - \frac{2 \, \arctan \left (\frac{\sqrt{d x^{3} + c}}{\sqrt{-c}}\right )}{a^{2} \sqrt{-c} d^{2}}\right )} \end{align*}

Verification of antiderivative is not currently implemented for this CAS.

[In]

integrate(1/x/(b*x^3+a)^2/(d*x^3+c)^(1/2),x, algorithm="giac")

[Out]

-1/3*d^2*((2*b^2*c - 3*a*b*d)*arctan(sqrt(d*x^3 + c)*b/sqrt(-b^2*c + a*b*d))/((a^2*b*c*d^2 - a^3*d^3)*sqrt(-b^
2*c + a*b*d)) - sqrt(d*x^3 + c)*b/((a*b*c*d - a^2*d^2)*((d*x^3 + c)*b - b*c + a*d)) - 2*arctan(sqrt(d*x^3 + c)
/sqrt(-c))/(a^2*sqrt(-c)*d^2))